Imagine you are at a restaurant ordering starters. You look at the menu and notice that they offer four items. For ease of exposition, let us refer to these items as A, B, C, and a combination comprising of half of item A and half of item B. Which product might you order? Now imagine if there were three instead of four items—A, B, and a combination comprising of half of item A and half of item B. Would the removal of option C from the choice set influence what you order? Why should this be the case? We posit that people will be more likely to select the combination item in both choice sets, because consumers typically value variety (Ratner, Kahn, and Kahneman, 1999).

However, the preference for the combination is likely to be much higher in the second choice set than in the first. This occurs because the combination item in the second set is all-inclusive which leads to the assessment that it is complete. This feeling of completeness not only increases selection of the combination but also leads to a completeness premium: consumers are willing to pay more when the combination item is all-inclusive.

Methods

6 studies (total N=1853) show a positive effect of Inclusiveness framing on Completeness ratings and Combination evaluation. Mechanical Turk participants were asked to choose (Study 1A; Study 4) or evaluate (Study 1B, 2, 3A, and 3B) combinations. Inclusive combinations were presented as containing a fraction of all options in the menu. Non-Inclusive combinations were presented as excluding one or more. Example (also see Results section):

Inclusive combination menu: A, B, AB(combination option)
Non-Inclusive combination menu: A, B, AB, and C.

Alternative explanation

<table>
<thead>
<tr>
<th>Theoretical account</th>
<th>Where is it tested?</th>
<th>How is it tested?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completeness</td>
<td>3a, 3b Inclusive combinations are perceived more complete than non-inclusive</td>
<td>Mediation analysis</td>
</tr>
<tr>
<td>Consideration set:</td>
<td>3b Higher quality excluded option NI combo should have lower value than inclusive combo</td>
<td>Manipulation of excluded option's quality ratings</td>
</tr>
<tr>
<td>Quality</td>
<td>3b Similar quality excluded option NI combo should have lower value than inclusive combo</td>
<td>Manipulation of excluded option's quality ratings</td>
</tr>
<tr>
<td>Consideration set:</td>
<td>3b Higher number of items makes combination less valuable</td>
<td>Manipulation of number of options included in the combination</td>
</tr>
<tr>
<td>Similarity</td>
<td>3a Combination with all items included should further depress value of NI combo</td>
<td>Presentation of superior combination</td>
</tr>
<tr>
<td>Number of items</td>
<td>2 Higher number of items makes combination less valuable</td>
<td>Manipulation of number of options included in the combination</td>
</tr>
<tr>
<td>Superior combination (more variety)</td>
<td>3a Combination with all items included should further depress value of NI combo</td>
<td>Presentation of superior combination</td>
</tr>
<tr>
<td>Regret</td>
<td>2.3b The NI combo generates higher regret for missing options</td>
<td>Measurement of Perceived Regret</td>
</tr>
<tr>
<td>Need for Closure</td>
<td>2 People with higher NFC have higher Inc-NI differences; people with lower NFC should not show difference in Inc-NI evaluation</td>
<td>Need for Closure scale</td>
</tr>
</tbody>
</table>

Results

Study 1B: choose between combination and one of two options.

Study 3B: varying quality of the excluded option (less, equal, or more than included ones), PLUS condition in the example below. Completeness,

Study 4: choose one of two combination with or without Inclusiveness cues.

Control condition:
A) 3 Red Dahlias and 3 Black Dahlias, $25 value
B) 3 Petunias and 3 Black Petunias, $30 value

Comparison condition:
Dahlias: Red Dahlias (bunch of 3) and Black Dahlias (bunch of 3)
Petunias: Red Petunias (bunch of 3), Black Petunias (bunch of 3), and Yellow Petunias (bunch of 3)

Please pick one:
A) 3 Red Dahlias and 3 Black Dahlias, $25 value
B) 3 Red Petunias and 3 Black Petunias, $30 value

Conclusion and contribution

Combinations have been sparsely studied in consumer behavior and in judgment and decision-making (Chernev and Gal, 2010; Brough and Chernev, 2012). We build on this research and extend the understanding on how consumers perceive and evaluate combinations.

This work contributes to the understanding of completeness as a consumer concept and applies it to a novel situation. Adding a non-included option to a menu that contains a combination lowers the completeness evaluation of the combination and subsequently its value.

It is possible to change the evaluation of the same combination, composed by the same proportion of the same items, by framing it as complete or incomplete through the menu composition.

References

